Partiële differentiaalvergelijkingen, WIPDV-07 2010/11 semester II b

Re-examination, August 23rd, 2011.
Name Student number

Notes:

- You may use one sheet (single side written) with notes from the lectures.
- During the exam it is NOT permitted to consult books, handouts, other notes.
- Numerical/graphic calculators are permitted, symbolic calculators are NOT permited.
- Devices with wireless internet connection and/or document readers are NOT permitted.
- To pass the exam, You need to gather at least half of the total points at the final exam.
- Hint: please describe the solution procedures in full details, not only the results.

TEST (to be returned by $12: 00$)

1. (a) [pts 5] Show that the system

$$
\begin{aligned}
& u_{x}=3 x^{2} y+y, \\
& u_{y}=x^{3}+x,
\end{aligned}
$$

with the initial condition $u(0,0)=0$ has a unique solution.
(b) [pts 5] Prove that the slightly different system

$$
\begin{aligned}
u_{x} & =2.999999 x^{2} y+y \\
u_{y} & =x^{3}+x
\end{aligned}
$$

has no solution at all.
2. Consider the equation

$$
u_{x x}+2 u_{x y}+[1-q(y)] u_{y y}=0,
$$

where

$$
q(y)=\left\{\begin{array}{rc}
-1, & y<-1, \\
0, & |y| \leqslant 1 \\
1, & y>1
\end{array}\right.
$$

(a) [pts 3] Compute the domains where the equation is hyperbolic, parabolic, and elliptic.
(b) [pts 2] Draw graphically the domains where the equation is hyperbolic, parabolic, and elliptic.
3. Let $u(x, t)$ be the solution of the wave problem defined on the whole real line

$$
\begin{aligned}
& u_{t t}-9 u_{x x}=0, \quad-\infty<x<\infty, t>0, \\
& u(x, 0)=f(x)= \begin{cases}1, & |x| \leqslant 2, \\
0, & |x|>2,\end{cases} \\
& u_{t}(x, 0)=g(x)= \begin{cases}1, & |x| \leqslant 2, \\
0, & |x|>2 .\end{cases}
\end{aligned}
$$

(a) $[\mathbf{p t s} 4]$ Find the value of the solution u in the point $\left(0, \frac{1}{6}\right)$, that is: find $u\left(0, \frac{1}{6}\right)$.
(b) [pts 5] Discuss the behavior of the solution at large time, that is: find $\lim _{t \rightarrow \infty} u(x, t)$.
(c) [pts 6] Find the maximal value of $u(x, t)$, and the points where this maximum is achieved.
4. [pts 8] Using the method of separation of variables, derive step by step the complete solution (including the expression of the coefficients) for the problem of a vibrating string with fixed ends:

$$
\begin{array}{ll}
u_{t t}-c^{2} u_{x x}=0, & 0<x<L, 0<t, \\
u(0, t)=u(L, t)=0, & t \geqslant 0, \\
u(x, 0)=f(x), & 0 \leqslant x \leqslant L, \\
u_{t}(x, 0)=g(x), & 0 \leqslant x \leqslant L .
\end{array}
$$

5. (a) [pts 2] Recall the definition of harmonic function.
(b) [pts 3] Compute the expression of the function

$$
u(x, y)=\frac{x}{x^{2}+y^{2}} .
$$

in polar coordinates (r, θ).
(c) [pts 4] Show that u defined at point b) is harmonic. You may use the expression u either in cartesian coordinates or in polar coordinates, as you prefer.
6. [pts 7] Write the Fourier sine series of the function

$$
f(x)= \begin{cases}4-5 x, & 0<x<\frac{1}{2} \\ 5-5 x, & \frac{1}{2} \leqslant x<1\end{cases}
$$

over the interval $[0,1]$, and find the expression of the coefficients.
7. (a) [pts 3] Recall the first and the second Green's identities.
(b) [pts 4] Using first Green's identity, calculate

$$
\int_{C} y \frac{\partial x}{\partial n} d s
$$

where C is the region drawn below

and the symbol $\frac{\partial}{\partial n}$ denotes the standard normal derivative.

